Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Clin Oncol ; 11(1): 31-36, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31289674

RESUMO

Glioblastomas (GBMs), a type of highly malignant brain tumour, contain various macrophages/microglia that are known as tumour-associated macrophages (TAMs). These TAMs have various roles in tumour biology. Histopathological aspects of TAMs and associations with tumour growth assessed by magnetic resonance imaging (MRI) are poorly described. In the present study, 16 patients that had sufficient tumour tissue and histological hallmarks were examined. The tumours were classified as either slow- (n=7) or fast-growing (n=9) based on the segmented tumour volumes from MRI scans taken at diagnosis and preoperatively. Using cluster of differentiation (CD)68 and ionized calcium-binding adaptor molecule 1 (Iba1) antibodies, the number, morphology, localization and distribution of TAMs in the GBM tissue were studied. TAMs were significantly more immunoreactive for anti-Iba1 (TAMsIba1) compared with anti-CD68 (TAMsCD68; P<0.001). In central tumour areas and around vessels in the infiltration zone there were more TAMsCD68 in slow-growing tumours (P=0.003 and P=0.025, respectively). Central tumour areas contained more TAMs compared with the infiltration zone (P=0.001 for TAMsCD68 and P<0.001 for TAMsIba1). The majority of TAMs exhibited a ramified phenotype in the infiltration zone, whereas central TAMs were mostly amoeboid. TAMs were present in high numbers in most regions of the tumour, whereas there were few in necrotic areas. In conclusion, the present study demonstrated and confirmed that the high numbers of TAMs in GBMs assume a range of morphologies consistent with various activation states, and that slow-growing GBMs seem to contain a TAM-population different to their fast-growing counterparts.

2.
Front Syst Neurosci ; 13: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930755

RESUMO

Layer II of the medial entorhinal cortex (MEC LII) contains the largest number of spatially modulated grid cells and is one of the first regions in the brain to express Alzheimer's disease (AD)-related pathology. The most common principal cell type in MEC LII, reelin-expressing stellate cells, are grid cell candidates. Recently we found evidence that γ-aminobutyric acid (GABA)A receptor subunits show a specific distribution in MEC LII, in which GABAA α3 is selectively associated with reelin-positive neurons, with limited association with the other principal cell type, calbindin (CB)-positive pyramidal neurons. Furthermore, the expression of α3 subunit decreases in mice between P15 and P25, which coincides with the emergence of stable grid cell activity. It has been shown that the α3 subunit undergoes specific developmental changes and that it may exert pro-inflammatory actions if improperly regulated. In this review article, we evaluate the changing kinetics of α3-GABAA receptors (GABAARs). during development in relation to α3-subunit expression pattern in MEC LII and conclude that α3 could be closely related to the stabilization of grid cell activity and theta oscillations. We further conclude that dysregulated α3 may be a driving factor in early AD pathology.

3.
eNeuro ; 5(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951577

RESUMO

Grid cells in layer II of the medial entorhinal cortex (MEC LII) generate multiple regular firing fields in response to the position and speed of an individual within the environment. They exhibit a protracted postnatal development and, in the adult, show activity differences along the dorsoventral axis (DVA). Evidence suggests parvalbumin-positive (PV+) interneurons, most of which are perisomatic-targeting cells, play a crucial role in generation of the hexagonal grid cell activity pattern. We therefore hypothesized that the development and organization of PV+ perisomatic terminals in MEC LII reflect the postnatal emergence of the hexagonal firing pattern and dorsoventral differences seen in grid cell activity. We used immuno-electron microscopy to examine the development of PV+ perisomatic terminals and their target somata within dorsal and ventral MEC LII in rats of postnatal day (P)10, P15, and P30. We demonstrate that in dorsal and ventral MEC LII, the cross-sectional area of somata and number and density of perisomatic PV+ terminals increase between P10 and P15. A simultaneous decrease was observed in cross-sectional area of PV+ terminals. Between P15 and P30, both MEC regions showed an increase in PV+ terminal size and percentage of PV+ terminals containing mitochondria, which may enable grid cell activity to emerge and stabilize. We also report that dorsal somata are larger and apposed by more PV+ terminals than ventral somata at all stages, suggesting a protracted maturation in the ventral portion and a possible gradient in soma size and PV+ basket innervation along the DVA in the adult.


Assuntos
Córtex Entorrinal/crescimento & desenvolvimento , Parvalbuminas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Animais , Contagem de Células , Córtex Entorrinal/ultraestrutura , Masculino , Terminações Pré-Sinápticas/ultraestrutura , Ratos Long-Evans
4.
Front Neuroanat ; 12: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915531

RESUMO

GABAergic parvalbumin-expressing (PV+) interneurons provide powerful inhibitory modulation of grid cells in layer II of the medial entorhinal cortex (MEC LII). However, the molecular machinery through which PV+ cells regulate grid cell activity is poorly defined. PV+ interneurons impart inhibitory modulation primarily via GABA-A receptors (GABAARs). GABAARs are pentameric ion channels assembled from a repertoire of 19 subunits. Multiple subunit combinations result in a variety of receptor subtypes mediating functionally diverse postsynaptic inhibitory currents. Whilst the broad expression patterns of GABAAR subunits within the EC have been reported, those expressed by individual MEC LII cell types, in particular grid cells candidates, stellate and pyramidal cells, are less well described. Stellate and pyramidal cells are distinguished by their selective expression of reelin (RE+) and calbindin (CB+) respectively. Thus, the overall aim of this study was to provide a high resolution analysis of the major (α and γ) GABAAR subunits expressed in proximity to somato-dendritic PV+ boutons, on RE+ and CB+ cells, using immunohistochemistry, confocal microscopy and quantitative RT-PCR (qPCR). Clusters immunoreactive for the α1 and γ2 subunits decorated the somatic membranes of both RE+ and CB+ cells and were predominantly located in apposition to clusters immunoreactive for PV and vesicular GABA transporter (VGAT), suggesting expression in GABAergic synapses innervated by PV interneurons. Although intense α2 subunit-immunopositive clusters were evident in hippocampal fields located in close proximity to the EC, no specific signal was detected in MEC LII RE+ and CB+ profiles. Immunoreactivity for the α3 subunit was detected in all RE+ somata. In contrast, only a sub-population of CB+ cells was α3 immunopositive. These included CB-α3 cells which were both PV+ and PV-. Furthermore, α3 subunit mRNA and immunofluorescence decreased significantly between P 15 and P 25, a period implicated in the functional maturation of grid cells. Finally, α5 subunit immunoreactivity was detectable only on CB+ cells, not on RE+ cells. The present data demonstrates that physiologically distinct GABAAR subtypes are selectively expressed by CB+ and RE+ cells. This suggests that PV+ interneurons could utilize distinct postsynaptic signaling mechanisms to regulate the excitability of these different, candidate grid cell sub-populations.

5.
Development ; 144(22): 4125-4136, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061636

RESUMO

During CNS development, interneuron precursors have to migrate extensively before they integrate in specific microcircuits. Known regulators of neuronal motility include classical neurotransmitters, yet the mechanisms that assure interneuron dispersal and interneuron/projection neuron matching during histogenesis remain largely elusive. We combined time-lapse video microscopy and electrophysiological analysis of the nascent cerebellum of transgenic Pax2-EGFP mice to address this issue. We found that cerebellar interneuronal precursors regularly show spontaneous postsynaptic currents, indicative of synaptic innervation, well before settling in the molecular layer. In keeping with the sensitivity of these cells to neurotransmitters, ablation of synaptic communication by blocking vesicular release in acute slices of developing cerebella slows migration. Significantly, abrogation of exocytosis primarily impedes the directional persistence of migratory interneuronal precursors. These results establish an unprecedented function of the early synaptic innervation of migrating neuronal precursors and demonstrate a role for synapses in the regulation of migration and pathfinding.


Assuntos
Movimento Celular , Interneurônios/citologia , Células-Tronco Neurais/citologia , Sinapses/metabolismo , Animais , Forma Celular , Cerebelo/citologia , Cerebelo/ultraestrutura , Fenômenos Eletrofisiológicos , Feminino , Glutamatos/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX2/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Sci Rep ; 5: 8816, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25743104

RESUMO

Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic ß-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.


Assuntos
Adipócitos/metabolismo , Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Adipócitos/citologia , Adipócitos/patologia , Animais , Biomarcadores , Diferenciação Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilação da Expressão Gênica , Humanos , Insulina/genética , Gotículas Lipídicas/patologia , Transporte Proteico , RNA Mensageiro/genética , Ratos
7.
Mol Cell Neurosci ; 65: 21-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25662290

RESUMO

The present study describes for the first time the neural expression and distribution of UGS148, a protein encoded by the RIKEN cDNA63330403K07 gene that has been shown to be prominently and characteristically expressed in neural stem cells (NSCs). Based on its molecular structure, UGS148 is an intracellular protein expected to be involved in intracellular sorting, trafficking, exocytosis and membrane insertion of proteins. We demonstrate that UGS148 is highly expressed in embryonic NSCs as well as, albeit at low level, in the adult neurogenic niches, the subventricular zone and the hippocampal dentate gyrus. Interestingly, the highest expression level of UGS148 in the adult mouse brain was observed specifically in the neurogenic cells lining the third ventricle, the tanycytes. Our in vitro studies show the involvement of UGS148 in the regulation of the proliferation of NSCs.


Assuntos
Giro Denteado/metabolismo , Células Ependimogliais/metabolismo , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico
8.
Exp Hematol ; 43(3): 215-222.e2, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25462021

RESUMO

To investigate whether the type of programmed cell death of myelodysplastic erythroid cells depends on their cellular context, we performed studies on cells from patients with low-risk myelodysplastic syndromes. We compared erythroid cells (and their precursor cells) from the mononuclear cell fraction with those from the hematon fraction, which are compacted complexes of hematopoietic cells surrounded by their own micro-environment. In directly fixed materials, erythroblasts exhibited signs of autophagy with limited apoptosis (<3%) based on ultrastructural characteristics and immunogold labeling for activated caspase-3. After 24 h in culture, myelodysplastic erythroblasts exhibited a significant increase in apoptosis (22 ± 7% vs. 3 ± 2%, p = 0.001). In contrast, the myelodysplastic erythroblasts from the hematon fraction did not exhibit an increased tendency toward apoptosis after culture (7 ± 3.3% vs. 1.8 ± 2.3%), which was in line with results for normal bone marrow cells. The same dependency on the micro-environment was noted for immature erythroid progenitor cells. Myelodysplastic hematons exhibited distinct numbers of erythroid burst-forming units in association with an extensive network of stromal cells, whereas small numbers of erythroid burst-forming units were generated from the myelodysplastic mononuclear cells compared with normal mononuclear cells (10.2 ± 9 vs. 162 ± 125, p < 0.001). Co-culture of erythroid myelodysplastic cells in the presence of growth factors (vascular endothelial growth factor, leukemia inhibitory factor) or on the MS-5 stromal layer did not restore the expansion of erythroid precursor cells. These data indicate that surviving myelodysplastic erythroid progenitors become more vulnerable to programmed cell death when they are detached from their own micro-environment.


Assuntos
Células Precursoras Eritroides/fisiologia , Síndromes Mielodisplásicas/fisiopatologia , Microambiente Tumoral , Idoso , Idoso de 80 Anos ou mais , Apoptose , Sobrevivência Celular , Células Cultivadas , Células Precursoras Eritroides/patologia , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco
9.
Front Neuroanat ; 8: 31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860436

RESUMO

The locus coeruleus (LC) nucleus modulates adaptive behavioral responses to stress and dysregulation of LC neuronal activity is implicated in stress-induced mental illnesses. The LC is composed primarily of noradrenergic neurons together with various glial populations. A neuroglia cell-type largely unexplored within the LC is the NG2 cell. NG2 cells serve primarily as oligodendrocyte precursor cells throughout the brain. However, some NG2 cells are in synaptic contact with neurons suggesting a role in information processing. The aim of this study was to neurochemically and anatomically characterize NG2 cells within the rat LC. Furthermore, since NG2 cells have been shown to proliferate in response to traumatic brain injury, we investigated whether such NG2 cells plasticity also occurs in response to emotive insults such as stress. Immunohistochemistry and confocal microscopy revealed that NG2 cells were enriched within the pontine region occupied by the LC. Close inspection revealed that a sub-population of NG2 cells were located within unique indentations of LC noradrenergic somata and were immunoreactive for the neuronal marker NeuN whilst NG2 cell processes formed close appositions with clusters immunoreactive for the inhibitory synaptic marker proteins gephyrin and the GABA-A receptor alpha3-subunit, on noradrenergic dendrites. In addition, LC NG2 cell processes were decorated with vesicular glutamate transporter 2 immunoreactive puncta. Finally, 10 days of repeated restraint stress significantly increased the density of NG2 cells within the LC. The study demonstrates that NG2 IR cells are integral components of the LC cellular network and they exhibit plasticity as a result of emotive challenges.

10.
Front Neuroanat ; 7: 41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367297

RESUMO

Several findings have indicated an involvement of dopamine in panic and defensive behaviors. The dorsolateral column of the periaqueductal gray (dlPAG) is crucially involved in the expression of panic attacks in humans and defensive behaviors, also referred to as panic-like behaviors, in animals. Although the dlPAG is known to receive a specific innervation of dopaminergic fibers and abundantly expresses dopamine receptors, the origin of this dopaminergic input is largely unknown. This study aimed at mapping the dopaminergic projections to the dlPAG in order to provide further insight into the panic-like related behavior circuitry of the dlPAG. For this purpose, the retrograde tracer cholera toxin subunit b (CTb) was injected into the dlPAG of male Wistar rats and double immunofluorescence for CTb and tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of dopamine, was performed. Neurons labeled for both CTb and TH were counted in different dopaminergic cell groups. The findings indicate that the dopaminergic nerve terminals present in the dlPAG originate from multiple dopamine-containing cell groups in the hypothalamus and mesencephalon. Interestingly, the A13 cell group is the main source of dopaminergic afferents to the dlPAG and contains at least 45% of the total number of CTb/TH-positive neurons. Anterograde tracing with biotinylated dextran amine (BDA) combined with double immunofluorescence for BDA and TH confirmed the projections from the A13 cell group to the dlPAG. The remainder of the dopamine-positive terminals present in the dlPAG was found to originate from the extended A10 cell group and the A11 group. The A13 cell group is known to send dopaminergic efferents to several other brain regions implicated in defensive behavior, including the central amygdala and ventromedial hypothalamus. Therefore, although direct behavioral evidence is lacking, our finding that the A13 cell group is also the main source of dopaminergic input to the dlPAG suggests that dopamine might contribute to the regulation of dlPAG-mediated defensive behaviors.

11.
Respir Res ; 14: 97, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088173

RESUMO

BACKGROUND: Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis. METHODS: We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls. RESULTS: We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1ß. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1. CONCLUSION: The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.


Assuntos
Brônquios/patologia , Células Epiteliais/patologia , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/fisiologia , Renovação Mitocondrial/fisiologia , Fumar/efeitos adversos , Adulto , Idoso , Brônquios/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Dinaminas , Células Epiteliais/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Técnicas In Vitro , Masculino , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Risco , Superóxido Dismutase/metabolismo , Fatores de Tempo
13.
Neurobiol Aging ; 34(4): 1277-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23063645

RESUMO

Brain microvasculature plays a critical role in the regulation of homeostasis of neural tissues. The present study focuses on characteristic microvascular basement membrane (bm) aberrations in the midbrain periaqueductal gray matter (PAG) and their relation to aging. The PAG can be considered a caudal extension of the limbic system and is a key structure in the regulation of a myriad of autonomic and motor control functions. In an ultrastructural study, morphologic changes in mesencephalic PAG capillaries were assessed in aged and young hamster and compared with those in caudal brainstem areas. Bm aberrations were studied in 1200 capillaries (n = 600 young hamsters; n = 600 aged hamsters). A new, never reported variant of bm degeneration was found that presented itself as foamy-like structures accumulating within the lamina densa of notably PAG capillaries. We classified these foamy structures as 'spumiform basement membrane degenerations' (sbmd) in which we could distinguish 4 stages depending on the size and intramembranous localization, ranging from split bm (stage I), intermediate stages II and III, to extensive stage IV, affecting almost the complete capillary bm outline. In the PAG of senescent animals various stages of sbmd were observed in 92 ± 3% of all capillaries. Stage II was most prominently present (59%), followed by stage III (20%), and stage IV (13%). These bm aberrations were clearly age-dependent because in young animals, only 5% of the PAG capillaries showed characteristics of sbmd. For comparison, in the pontine reticular formation at the PAG-level, 41% of the capillaries showed a form of sbmd, but these defects were significantly less severe (stages I-II, 98%), and caudal brainstem structures displayed no sbmd at all. In addition to sbmd, diffuse endothelial changes, disrupted tight junctions, thickening of the bm, pericyte degeneration, and gliosis were observed in PAG capillaries. It is hypothesized that selective bm permeability of PAG capillaries results in a sequence of bm damage events that start with split bm, gradually changing into more and more extensive sbmd accumulations that eventually almost completely surround the capillary. Progressive sbmd in PAG capillaries might lead to a loss of blood-brain barrier function and consequently to impairment of autonomic and motor control functions exerted by the PAG.


Assuntos
Membrana Basal/ultraestrutura , Tronco Encefálico/irrigação sanguínea , Tronco Encefálico/ultraestrutura , Capilares/ultraestrutura , Transtornos Cerebrovasculares/patologia , Animais , Cricetinae , Feminino , Mesocricetus
14.
Gynecol Oncol ; 126(3): 474-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22668882

RESUMO

OBJECTIVE: Indoleamine-2,3-dioxygenase (IDO) suppresses the function of T-lymphocytes and is an important immune escape mechanism for cancer. Therefore, it is to be expected that IDO influences prognosis of cancer patients. This study aimed to investigate the prognostic role of IDO expression in a large cohort of endometrial carcinoma (EC) patients. METHODS: A tissue microarray containing primary EC tissue of 355 patients treated in a single institution was used to evaluate IDO expression. Expression of IDO was associated with clinicopathological characteristics, survival and previously determined numbers of CD8(+) and Foxp3(+) T-lymphocytes. RESULTS: IDO(high) expression was associated with lower numbers of intratumoral CD8(+) T-lymphocytes (p=0.031). Next to well-known prognostic parameters, IDO(high) expression was independently associated with poor disease specific survival in the general cohort of EC patients (HR 2.62, 95% C.I. 1.48-4.66, p=0.001) and among patients with early stage EC (HR 3.06, 95% C.I. 1.10-8.54, p=0.032). CONCLUSION: Our results show that IDO expression is associated with poor survival. This provides evidence that further research into the use of IDO blocking agents in cancer treatment is valid where it might be a promising new therapeutic strategy.


Assuntos
Carcinoma/enzimologia , Carcinoma/imunologia , Neoplasias do Endométrio/enzimologia , Neoplasias do Endométrio/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T , Idoso , Linfócitos T CD8-Positivos , Carcinoma/patologia , Linhagem Celular Tumoral , Intervalos de Confiança , Intervalo Livre de Doença , Neoplasias do Endométrio/patologia , Feminino , Fatores de Transcrição Forkhead , Humanos , Contagem de Linfócitos , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Razão de Chances , Modelos de Riscos Proporcionais
15.
Neurobiol Aging ; 33(12): 2920-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22445324

RESUMO

UNLABELLED: The nucleus pararetroambiguus (NPRA) and the commissural nucleus of the solitary tract (NTScom) show estrogen nuclear receptor-α immunoreactivity (nuclear ER-α-IR). Both cell groups are involved in estrous cycle related adaptations. We examined in normally cycling aged hamsters the occurrence/amount/frequency of age-related degenerative changes in NPRA and NTScom during estrus and diestrus. In 2640 electron microscopy photomicrographs plasticity reflected in the ratio of axon terminal surface/dendrite surface (t/d) was morphometrically analyzed. Medial tegmental field (mtf, nuclear ER-α-IR poor), served as control. In aged animals, irrespective of nuclear ER-α-IR+ or nuclear ER-α-IR- related cell groups, extensive diffuse degenerative structural aberrations were observed. The hormonal state had a strong influence on t/d ratios in NPRA and NTScom, but not in mtf. In NPRA and NTScom, diestrous hamsters had significantly smaller t/d ratios (NPRA, 0.750 ± 0.050; NTScom, 0.900 ± 0.039) than the estrous hamsters (NPRA, 1.083 ± 0.075; NTScom, 1.204 ± 0.076). Aging affected axodendritic ratios only in mtf (p < 0.001). IN CONCLUSION: in the female hamster brain, estrous cycle-induced structural plasticity is preserved in NPRA and NTScom during aging despite the presence of diffuse age-related neurodegenerative changes.


Assuntos
Envelhecimento , Tronco Encefálico/citologia , Estrogênios/metabolismo , Neurônios/metabolismo , Comportamento Sexual Animal/fisiologia , Fatores Etários , Animais , Tronco Encefálico/metabolismo , Cricetinae , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/metabolismo , Feminino , Masculino , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura , Fatores de Tempo
16.
Neurobiol Aging ; 33(3): 625.e1-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21550695

RESUMO

Lipofuscin accumulation is a characteristic feature of senescent postmitotic neuronal cells but estrogen may have protecting effects by inhibiting its formation. In the present ultrastructural study, lipofuscin accumulation was studied in 2 estrogen-α-receptive brainstem areas: nucleus pararetroambiguus (NPRA) and the commissural part of the solitary tract nucleus/A2 catecholaminergic group (NTScom/A2) and compared with the estrogen-insensitive medial tegmental field (mtf), in young (23 weeks) and aged (95 weeks) female hamsters. In the aged animals, extensive intracytoplasmic lipofuscin accumulation was observed. A total number of 6450 neurons were classified in 4 categories. Levels were significantly elevated in each of the brain areas studied. Lipofuscin accumulation was strongest in the mtf, less in NPRA, and remarkably less in the area of NTScom/A2. In conclusion, the observed differences in lipofuscin accumulation suggest: (1) considerable regional differences in the degree of neuronal vulnerability; and (2) a possible neuroprotective role for estrogen, because the degree of accumulation is inversely related to the density of the estrogen receptors, varying from nonreceptive (mtf) to NPRA and NTScom/A2 (most receptive).


Assuntos
Envelhecimento/metabolismo , Tronco Encefálico/metabolismo , Lipofuscina/metabolismo , Neurônios/metabolismo , Envelhecimento/fisiologia , Animais , Tronco Encefálico/fisiologia , Senescência Celular/fisiologia , Cricetinae , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/fisiologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Mesocricetus , Neurônios/fisiologia
17.
J Mol Cell Cardiol ; 51(3): 381-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21745477

RESUMO

The most common clinical tachycardia, Atrial Fibrillation (AF), is a progressive disease, caused by cardiomyocyte remodeling, which finally results in contractile dysfunction and AF persistence. Recently, we identified a protective role of heat shock proteins (HSPs), especially the small HSPB1 member, against tachycardia remodeling in experimental AF models. Our understanding of tachycardia remodeling and anti-remodeling drugs is currently hampered by the lack of suitable (genetic) manipulatable in vivo models for rapid screening of key targets in remodeling. We hypothesized that Drosophila melanogaster can be exploited to study tachycardia remodeling and protective effects of HSPs by drug treatments or by utilizing genetically manipulated small HSP-overexpressing strains. Tachypacing of Drosophila pupae resulted in gradual and significant cardiomyocyte remodeling, demonstrated by reduced contraction rate, increase in arrhythmic episodes and reduction in heart wall shortening, compared to normal paced pupae. Heat shock, or pre-treatment with HSP-inducers GGA and BGP-15, resulted in endogenous HSP overexpression and protection against tachycardia remodeling. DmHSP23 overexpressing Drosophilas were protected against tachycardia remodeling, in contrast to overexpression of other small HSPs (DmHSP27, DmHSP67Bc, DmCG4461, DmCG7409, and DmCG14207). (Ultra)structural evaluation of the tachypaced heart wall revealed loss of sarcomeres and mitochondrial damage which were absent in tachypaced DmHSP23 overexpressing Drosophila. In addition, tachypacing induced a significant increase in calpain activity, which was prevented in tachypaced Drosophila overexpressing DmHSP23. Tachypacing of Drosophila resulted in cardiomyocyte remodeling, which was prevented by general HSP-inducing treatments and overexpression of a single small HSP, DmHSP23. Thus, tachypaced D. melanogaster can be used as an in vivo model system for rapid identification of novel targets to combat AF associated cardiomyocyte remodeling.


Assuntos
Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Contração Miocárdica , Animais , Fibrilação Atrial/patologia , Calpaína/metabolismo , Modelos Animais de Doenças , Diterpenos/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/fisiopatologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Contração Miocárdica/genética , Oximas/farmacologia , Piperidinas/farmacologia , Taquicardia/patologia , Taquicardia/fisiopatologia , Taquicardia/prevenção & controle
18.
Neurosci Res ; 67(4): 267-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20420863

RESUMO

Structural neuronal plasticity is present in the nucleus para-retroambiguus (NPRA) and the commissural nucleus of the solitary tract/A2 group (NTScom/A2) in female hamsters. Both brainstem nuclei play a role in estrous cycle related autonomic adaptations. We investigated how aging affects the capillary condition in these adaptive brainstem regions. Senescent female hamsters (+/-95 weeks) were tested weekly for their 4-day estrous cycle. Subsequently morphological changes of NPRA and NTScom/A2 were compared with those of young (+/-20 weeks) females in an ultrastructural study. The medial tegmental field served as control area. In 841 capillaries (n=319 capillaries, young females (N=3); n=522 capillaries, aged females (N=4)) vascular aberrations were classified into 3 categories: endothelial and tight junction, basement membrane and pericyte aberrations. In old animals, capillaries showed marked endothelial changes, disrupted tight junctions, and thickening and splitting of basement membranes. Aberrations were found in 40-60% of all capillaries. About 70% of the pericytes contained degenerative inclusions. Despite this generalized vascular degeneration, the reproductive cycle of female hamsters was unaffected by vascular senescence. Perivascular fibrosis as reported in aging rats was never observed, which suggests the existence of species differences.


Assuntos
Envelhecimento/fisiologia , Barreira Hematoencefálica/patologia , Tronco Encefálico/irrigação sanguínea , Tronco Encefálico/patologia , Células Endoteliais/patologia , Receptor alfa de Estrogênio/fisiologia , Microvasos/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/ultraestrutura , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Tronco Encefálico/ultraestrutura , Cricetinae , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Ciclo Estral/fisiologia , Feminino , Fibrose , Masculino , Mesocricetus , Microscopia Eletrônica de Transmissão , Microvasos/metabolismo , Microvasos/ultraestrutura , Núcleo Solitário/irrigação sanguínea , Núcleo Solitário/patologia , Núcleo Solitário/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 107(15): 6988-93, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351285

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKAN is not understood, and there is no cure to halt or reverse the symptoms of this devastating disease. Recently, we and others presented a PKAN Drosophila model, and we demonstrated that impaired function of pantothenate kinase induces a neurodegenerative phenotype and a reduced lifespan. We have explored this Drosophila model further and have demonstrated that impairment of pantothenate kinase is associated with decreased levels of CoA, mitochondrial dysfunction, and increased protein oxidation. Furthermore, we searched for compounds that can rescue pertinent phenotypes of the Drosophila PKAN model and identified pantethine. Pantethine feeding restores CoA levels, improves mitochondrial function, rescues brain degeneration, enhances locomotor abilities, and increases lifespan. We show evidence for the presence of a de novo CoA biosynthesis pathway in which pantethine is used as a precursor compound. Importantly, this pathway is effective in the presence of disrupted pantothenate kinase function. Our data suggest that pantethine may serve as a starting point to develop a possible treatment for PKAN.


Assuntos
Drosophila/metabolismo , Regulação da Expressão Gênica , Panteteína/análogos & derivados , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Animais , Encéfalo/patologia , Coenzima A/química , Drosophila/genética , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Estresse Oxidativo , Oxigênio/química , Panteteína/farmacologia , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
20.
Eur J Heart Fail ; 11(3): 246-55, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19147448

RESUMO

AIMS: We previously showed that enhanced myogenic constriction (MC) of peripheral resistance arteries involves active AT(1) receptors in chronic heart failure (CHF). Recent data suggest both transactivation of EGF receptors and caveolae-like microdomains to be implicated in the activity of AT(1) receptors. Thus, we assessed their roles in increased MC in mesenteric arteries of CHF rats. METHODS AND RESULTS: Male Wistar rats underwent myocardial infarction to induce CHF and were sacrificed after 12 weeks. The number of caveolae in smooth muscle cells (SMC) of mesenteric arteries of CHF rats was decreased by 43.6 +/- 4.0%, this was accompanied by increased MC, which was fully normalized to the level of sham by antagonists of the AT(1)-receptor (losartan) or EGF-receptor (AG1478). Acute disruption of caveolae in sham rats affected caveolae numbers and MC to a similar extent as CHF, however MC was only reversed by the antagonist of the EGF-receptor, but not by the AT(1)-receptor antagonist. Further, in sham rats, MC was increased by a sub-threshold concentration of angiotensin II and reversed by both AT(1)- as well as EGF-receptor inhibition. In contrast, increased MC by a sub-threshold concentration of EGF was only reversed by EGF receptor inhibition. CONCLUSION: These findings provide the first evidence that decreased SMC caveolae numbers are involved in enhanced MC in small mesenteric arteries, by affecting AT(1)- and EGF-receptor function. This suggests a novel mechanism involved in increased peripheral resistance in CHF.


Assuntos
Cavéolas/ultraestrutura , Receptores ErbB/metabolismo , Insuficiência Cardíaca/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Vasoconstrição/fisiologia , Animais , Contagem de Células , Modelos Animais de Doenças , Imunofluorescência , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Imuno-Histoquímica , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/ultraestrutura , Microscopia Eletrônica , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/ultraestrutura , Contração Miocárdica/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...